Renormalization Group Technique for Quasi-one-dimensional Interacting Fermion Systems at Finite Temperature

نویسنده

  • C. Bourbonnais
چکیده

We review some aspects of the renormalization group method for interacting fermions. Special emphasis is placed on the application of scaling theory to quasi-one-dimensional systems at non zero temperature. We begin by introducing the scaling ansatz for purely one-dimensional fermion systems and its extension when interchain coupling and dimensionality crossovers are present at finite temperature. Next, we review the application of the renormalization group technique to the one-dimensional electron gas model and clarify some peculiarities of the method at the twoloop level. The influence of interchain coupling is then included and results for the crossover phenomenology and the multiplicity of characteristic energy scales are summarized. The emergence of the Kohn-Luttinger mechanism in quasi-one-dimensional electronic structures is discussed for both superconducting and density-wave channels. 2 C. Bourbonnais, B. Guay and R. Wortis This is page Printer: Opaque

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Calculations for the Relativistic Interacting Fermion System at Finite Temperature: Application to Liquid 3He

In this paper, at first we have formulated the lowest order constrained variational method for the relativistic case of an interacting fermion system at finite temperature. Then we have used this formalism to calculate some thermodynamic properties of liquid in the relativistic regime. The results show that the difference between total energies of relativistic and non-relativistic cases of liqu...

متن کامل

One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior.

It is well known that, generically, one-dimensional interacting fermions cannot be described in terms of a Fermi liquid. Instead, they present a different phenomenology, that of a Tomonaga-Luttinger liquid: the Landau quasiparticles are ill defined, and the fermion occupation number is continuous at the Fermi energy. We demonstrate that suitable fine tuning of the interaction between fermions c...

متن کامل

Calculation of Thermodynamic Properties of the Quasi-one Dimensional Liquid 3He at Finite Temperature

We have used a variational approach to calculate some thermodynamic properties of the quasi-one dimensional liquid 3He such as the energy, entropy, free energy, equation of state and heat capacity at finite temperature. We have employed the Lennard-Jones potential as the inter-atomic interaction. We have seen that the total energy increases by increasing both temperature and density....

متن کامل

2 9 A pr 1 99 8 Quantum Renormalization Group for 1 Dimensional Fermion Systems : a Modified Scheme

Inspired by the superblock method of White, we introduce a simple modification of the standard Renormalization Group (RG) technique for the study of quantum lattice systems. Our method which takes into account the effect of Boundary Conditions(BC), may be regarded as a simple way for obtaining first estimates of many properties of quantum lattice systems. By applying this method to the 1-dimens...

متن کامل

Correlation functions of an interacting spinless fermion model at finite temperature

We formulate correlation functions for a one-dimensional interacting spinless fermion model at finite temperature. By combination of a lattice path integral formulation for thermodynamics with the algebraic Bethe ansatz for fermion systems, the equal-time oneparticle Green’s function at arbitrary particle density is expressed as a multiple integral form. Our formula reproduces previously known ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002